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& POWER AND CROSS-POWER SPECTRUM ANALYSIS
BY HYBRID COMPUTERS

By Raymond S. Lim and William D. Cameron
Ames Research Center

SUMMARY

This paper describes a method for analyzing power and cross-power spectra
from 0.1 Hz to 20 kHz with general purpose hybrid computers. The method is
valid for analyzing continuous and discrete spectra of periodic, aperiodic,
complex, and stationary random signals. A spectrum is analyzed entirely on
the analog computer by a pseudo band-pass Tilter metliod. The bandwidth and
the averaging time are varied to suit the computation requirement of each
spectrum. The digital computer is used for automatic control of the analog
computer, for data acquisition, and for compensation of magnetic tape static
skew. The definition of power and cross-power spectra, and the validity of
various methods of analysis are comprehensively reviewed.

INTRODUCTION

Power and cross-power spectra are analyzed by filtering, phase shifting,
squaring, and averaging. During the past 20 years, many methods have been
devised for investigating problems in subjects ranging from aeronautics to
zoology and many special analyzers have been built. Reference 1 presents a
survey of spectrum analyzers. The flexibility of such analyzers is limited in
frequency range, filter bandwidth, signal skew error compensation, averaging
time, and the number of channels that can be analyzed simltaneously.
Recently, digital computers have been used for spectrum analysis (in a very
limited range).

The expanding technology of aeronautical and biomedical engineering
requires a more sophisticated method for spectrum analysis. This requirement
prompted the development of hybrid computers for spectrum analysis. The pur-
pose of this paper is (1) to present a hybrid-computer technique for analyzing
continucus and discrete spectra of periodic, aperiodic, complex, and station-
ary random signals from 0.1l Hz to 20 kHz, (2) to clarifly well-established
theories that describe random data, and (3) to clarify mechanization methods
for power and cross-power spectrum analyses.

Existing hybrid computers, with a few additional special instruments, can
be programmed to form a high quality spectrum analyzer. Hybrid computers are
useful for spectrum analysis because they have the speed and flexibility of an
analog computer, the dynamic range and accuracy of a digital computer, and the
automatic output of results for documentation and plotting.



At Ames Research Center, a hybrid computing system is used to compute .
power and cross-power spectra of all types of data. The data, recorded on
analog magnetic tape, have a frequency range from 0.01 Hz to 20 kHz, and may
or may not be stationary throughout the entire data record. The length of the
data record ranges from 50 msec to 60 sec with a dynamic range to 100 dB.
Three channels of data can be analyzed simultaneously by the analog computer.
The digital computer automatically controls the analog computer, performs the
data acquisition, and compensates for the static skew error of the magnetic
tape. It should be noted that any random data recorded on magnetic tape can
be treated as stationary random data if the entire record length is analyzed.

NOTATION
C1o(w) cospectrum
Qio{w) quadspectrum
Ry (T) autocorrelation function
ng(T) cross-correlation function
T averaging time
X(w) Fourier transform of x(t)

Xﬁm(t) x(t) passed through a band-pass filter with bandwidth Aw

x2 (t) XAw(t) delayed by 90°

A

x(t) time average of x(t)

;z;s ensemble average of x(t)

AN bandwidth

D1q(w) power spectral density of xl(t)
®22(w) power spectral density of x2(t)

0, (w) power spectral density of x(t)

Wa cutoff frequency of low-pass filter
W local oscillator frequency
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MATHEMATICAL THEORY

Definition of Power Spectrum

There are at least two ways to calculate the power spectrum of stationary
random data: (1) by direct calculation and (2) by transforming the autocorre-
lation function. By these methods, three basic mathematical definitions for
the power spectrum are generally derived, only two of which are wvalid for
random data. Let ®ll(w) be defined as the power spectral density (psd);
x(t), a stationary random signal; and T, the interval of the data to be
analyzed. The three definitions of psd are then:

1. From direct calculation,

T .
011(w) = 1lim L f x(t)e I gy (1)
2T
T—>o00 Ay
2. From direct calculation,
1 T -Jwt §
012(w) = Lim 5 [ x(t)e 9" at (2)
T—o0 k,_T

3. From transformation of the autocorrelation function,

o11(w) = \jp Rll(T)e_ij dr (3a)
= %/“ Ri1(T)cos wt dr (3b)
0
L[ e (o) (3¢)
= 1lim = jr b’y t)dt 3¢
ST Mo
T—>00
where
1 T
Ri1(T) = lim T L/ﬁ x(t)x(t - T)dr (L)
T o0 (o}

Equations (3) are mathematically correct and are excellent definitions
for mechanizing on either digital or analog computers. For digital computation,
equation (3b) is generally used, while for analog computation, equation (3c)
is generally preferred. Equation (3a) is mathematically related to the corre-
lation analysis of random data. The proof for equation (3a) is sometimes
called Wiener's theorem for autocorrelation, and it can be found in refer-
ence 2. The derivation of eguation (3c) from (3a) is relatively
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.straightforward, but since this derivation is not often found in published
literature, it is developed in appendix A. Equation (3¢) can be implemented
to obtain the density spectrum as follows:

1. x(t) is passed through a band-pass filter with bandwidth 2w to
obtain xa,(t),

2. xp,(t) is squared through a multiplier to obtain x2.,(t),
3. finally, xiw(t) is averaged to obtain xiw(t).

Equations (3) are applicable to stationary random signals as well as periodic
and nonperiodic signals. Equation (3c) is an estimate of equation (3a).

Reference 3 (Aseltine) shows that equation (2) is correct fo x(t)
(The wavy bar denotes Lhe ensenble average.) This equualion has little
practical use in spectrum analysis.

The first definition, equation (lL has been shown to be mathematically
invalid for all classes of random signals (ref. 3, L, 5, or 6}.

Definition of Cross-Power Spectrum

Cross-power spectrum analysis obtains the amplitude and phase-spectrum
information between two independent random signals, xi1(t) and xo(t). From the
electrical engineering point of view, a cross-power spectrum analyzer is a
Phase meter for measuring the phase and amplitude relationship between two
complex or random signals. The cross-power spectrum is a vector quantity, or
a complex function. The real part is called the cospectrum and the imaginary
part, the quadspectrum.

The cross-power spectrum function ®i15(w) can be defined as the Fourier
transformation of the cross-correlation function in a manner similar to defin-
ing the power spectrum as

o

d1o(w) = L/ﬂ Rio(7)e

-0

-jwT

dr (5)

Mathematically, this is the only known correct definition for random signals.
The definition of the cross-power spectrum function from direct calculation as

1 T jwt T -jwt
915(w) = lim T x1(t)e at f x=(t)e at (6)
T—>00 uo fo)

is incorrect when x1(t) and x5(t) are random signals (for the reason given in
the previous section for power spectrum). However, if x:(t) and xs(t) are
periodic functions, Papoulis (ref. 7) shows that equation (6) is correct.




Equation (5) can be defined in terms of the cospectrum and the

quadspectrum as

012(w) = Cio(w) + JQ12(w) (7)
where
Cio(w) = L/h Ris(T)cos wr ar (8a)
- T ( (
= 1lim —— Jf x t)x t)dt 8b)
Ao 20T Tt R
T—>00
and
Qio(w) = L/“ Rio(T)sin wr (9a)
1 T
= lin o= b/\ xlAw(t)x2Aw(t)dt (9b)
JAde) o)
T 00

In the above equations, C1o(w) is the cospectrum, ng(m) is the quadspectrum,

Ri2(7) is the cross-correlation function, xa. (t) is
band-pass filter with bandwidth Aw, and x3 A?

(Equations (8b) and (9b)

x2(t) passed through a

. . O
» t) is xzém(t) shifted 90°.

are derived in appendix B.)

Basic Method of Power Spectrum Analysis

(1) [ ’(Au(” XZAw“) Pyxlwlaw
- N 2
Figure 1l.- Analog method of power spectrum
analysis.
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Figure 2.- Analog method of cross-power
spectrum analysis.

The analog method of computing
power spectra is well-known. As indi-
cated by equations (3), (8b), and (9b),
the basic method of computing the power
and cross-power spectra is by band-pass
filtering, phase shifting, squaring,
and averaging the data (figs. 1 and 2,
respectively) .

Actually, the methods in figures 1
and 2 cannot be reasonably mechanized
because it is difficult to design
high-frequency narrow band-pass fil-
ters (/w of 1 Hz at 10 kHz), band-
pass filters that can automatically
select the bandwidth and the center
frequencies independently, and two
band-pass filters with an accurately



‘matched phase for cross-spectrum analysis. Consequently, the basic analog

‘method is not generally used. In its place, a pseudo band-pass filter (some-
times called tracking filter) is mechanized by the heterodyne principle. But
because of this filtering technique, the method is valid only for analyzing
data with a sufficiently long record. It is inaccurate for analyzing short
records of a transient nature (such as impact research or heartbeat data),
unless the data are made periodic. (This will be clarified in subsequent
discussions.) In the present technology, analog multipliers (for miltiplying
and squaring) and 90° phase-shift networks with the required bandwidth are
readily available.

TYPES OF RANDOM SIGNAL TO BE ANALYZED

The types of random data to be analyzed, by thc techniques described in
this report, can be classified into three groups:

1. Aerodynamic data on nonsteady phenomena. The frequency range of
interest is from 10 Hz to 20 kHz with a dynamic range of 70 dB and a data
record 60 sec long. The data are similar to white noise mixed with a few
periodic signals, and may or may not be stationary within the 60-sec length.
The spectrum is continuous.

2. Impact research data. The frequency range of interest is from 1 to
2500 Hz with a dynamic range of 80 dB and a data record 50 to 100 msec long.
The data are similar to a decaying oscillation mixed with a small amplitude
random signal. The spectrum is not continuous. These types of data mist be
converted to periodic data before the analysis so that They may be averaged.

3. Physiological and biological data. The frequency range is from O.1
to 1000 Hz with a dynamic range of 60 dB and a data record between 0.1 to
2 sec long. Most physiological data analyzed are heartbeats and braln waves,
both human and animal. The spectrum is not continuous. These data must also
be converted to periodic data before the analysis.

HYBRID COMPUTER METHOD OF SPECTRUM ANALYSIS

Method of Power and Cross-Power Spectrum Analysis

Power and cross-power spectra are analyzed by a hybrid computer in a
manner similar to the method discussed under Basic Method of Power Spectrum
Analysis. There are many combinations of analog and digital computers that
are called hybrid computers. The hybrid computer used to implement the spec-
trum analysis discussed in this report is the EAI HYDAC 2000 system, which
consists of a 231R-V analog computér and a DOS-350 logic computer. The method




of analysis is shown in figure 3, and
2.5 | [T 55 thoroughly analyzed in appendix C. *
-~ As shown in appendix C, the spectra of

L2 Ry ¥ [ Jousur x1(t) and xo(t) are
o sinwgt W ‘1
osc 1 o - 5
i
cos}wd o - Sepd a ou'r:u‘r (Dll(w) = Ax—.o (Output l) (loa)
xgl) m 3(1ﬂ_3€J Xp Aw(ﬁ A
N
) M + OUTPUT 2
eyou RS o) L% 2 Ooo(w) = ~ (Output 2) (1ob)

Figure 3.- Method of power and cross-power . .
gure 3 spamrmnangbsis. Equations (10) are not ambiguous and

are correct forms for random signals as

well as complex or periodic signals.

The Aw division in equations (10) is
for bandwidth normalization, and should be used for a continuous spectrum only.
For cross-power spectrum, the cospectrum and quadspectrum are

Cio(w) = & (Output 3) (11a)

Qa(v) = - = (output 1) (11b)

In particular, for inputs of

Xl('t) A.l sin wlt

x2(t) = Ay sin(wit - 65)

6, = variable, from 0° to 360°, Ciz(w) and Qiz(w) are

A,®B®

Cio(w) = lu cos 8o <A%> (12a)
A,%BZ

ng(w) = 111_ sin 6o <&‘2—*)> (lgb)

regardless of w1 > w, or w1 < wy. This means that there is no ambiguity
on the output sign of the quadspectrun.

The implementation of the power and cross-power spectrum analysis between
computer elements of the method shown in figure 3 is

1. Analog computer; all spectrum computations.
2. Digital computer;

(a) Logic computer - for automatic control of the analog computer
and analyzer output digitizing and storage.
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(b) IBM 7040/709L4 - off-line spectrum scaling, coherence function
computation, cross-power phase-angle computation, magnetic tape recorder
static-skew error compensation, and plotting.

In addition to the standard HYDAC 2000 system, a programmable two-phase
oscillator system and a low-pass filter system are also required.

Perhaps the best way to explain how the hybrid computer is used to
mechanize the spectrum analysis is to divide the system in figure 3 into six
major parts, and then describe each part in detail; these six parts are:

(l) a programmable two-phase oscillator, (2) a pseudo band-pass filter,

3) squaring and averaging, (L) output equations, (5) automatic program con-
trol and analog data digitizing, and (6) scaling and static skew-error
correction.

Programmable two-phase oscillator.-
A block diagram of the programmable
two-phase oscillator circuit is shown
in figure 4. The hardware is shown in
— | _ 0" pHAsE figure 5. The frequency of the spec-
5f_{?é?}. LINE FREQUENCY || | Two-g | SNl trum to be analyzed is punched onto
PAPER READER DECIMAL SYNTHESIZER SHIFTER -90° PHASE
TAPE CONVERTER " coswe! the paper tape to be read by the block
reader. The frequency synthesizer is
a new instrument and is simply a digi-
tal programmable oscillator. The two-
phase shifter is an all-pass active
network with two outputs. One output
is the reference phase; the other is
the -90° phase. The two output phases
are always 90 *#5° apart for the fre-
quency within the band of 0.1 to
5000 Hz. Before 1966, a two-phase

synthesizer was not available. The

FREQUENCY
COUNTER

DIGITAL
READOUT

Figure L.- Programmable two-phase oscillator.

amplitude response of the best single-
phase frequency synthesizer is %12 per
cent, and this larger amplitude
variation must be compensated in the
two-phase shifter to within *1 percent
or better. At the present, it is rea-
sonable to expect that a two-phase
synthesizer with an amplitude response
of 2 percent or better and a phase
Figure 5.- Auxiliary equipment required for linearity of £29 throughout the fre-
spectrum analysis. quency range will soon be available.

1




Pseudo band-pass filter.- The mechanization of the pseudo band-pass
filter is shown in figure 6. Consider the pseudo band-pass filter 1, which
consists of multiplier 1 and low-pass filter 1. The input signal x(t) is
miltiplied, or heterodyned, with the 0° phase of the oscillator. The resul-
tant output is a sum and difference frequency pair for each frequency w35 of
x(t). At the output of low-pass filter 1, only those frequencies within we
are passed. Thus the multiplier low-pass filter combination is, in effect, a
pseudo band-pass filter. The center frequency is determined by the oscillator,
and the bandwidth 4w 1is equal to 2we. In effect, x5, (t) is x(t) passed
through a band-pass filter with bandwidth Aw.

The synthesized band-pass filter in figure 6 is not a true band-pass
filter. It measures only that component of the signal inphase with the refer-
ence oscillator, as shown in appendix C. Therefore, the application of one
pseudo band-pass filter for spectrum analysis is not sufficient. Two Ppseudo
band-pass filters must be used to measure both the inphase and out-of -phase
components of the signal, since, in general, there is a random phase angle

between the input data and the oscil-

lator. If this phase angle 1s repre-
PSEUDO BAND-PASS FILTER NO. |

= — sented by 85, the output of the first
LN we || 3 pseudo band-pass filter is
| L L G A; cos{wt + 6;) and the second,
L
A; sin(wt + 61). To obtain a true mea-
xt) | Lo ., + [ exaan] sure of the signal, it is necessary to
s 1% . add these two components vectorially in
. the manner of
r . .
L
L 27y o AN
LAW,,,,, o Aiz = [Ai COS(wt + Gi) ]2
PSEUDC BAND-PASS FILTER NO.2
Figure 6.- Pseudo band-pass filter and ripple + LAj_ sin(not + ej) ]2
cancellation.
The pseudo band-pass filtering
circuit is shown in figure 7. Only the
00K, PSEUDO BAND-pASS x1(t) channel is shown; the xao(t)
PREFILTER — — » channel is the same. The circuit shown

in figure 7 should be self -explanatory.
m o Mad”  The outputs of low-pass filters 1 and 2
are X%m»(t) and xgém(t), respectively.

-30 sinwot| o0 .
*msm%ipwﬁ The phase and the amplitude responses

: ] of the x31(t) channel and the x5(t)
Hﬂéq::Pﬁﬁ» channel must be matched in order for
the cross-power spectrum outputs to be
AL*“*“WW}em meaningful. Any mismatch will be

+30(- Cosw,t)| PHASE .

° system error. The system error in
using the HYDAC 2000 system and the
auxiliary equipment is approximately
+149 of measurement with a full scale
of 360°.

Figure T.- Analog mechanization of pseudo
band-pass filtering system.
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Squaring and averaging.- The squaring and averaging circuit system is
shown in figure 8 for @®i3(w), and in figure 9 for ng(w) The circuits for
doo(w) and Cio(w) are assumed to be understood. True integration is used.

The integration time is set and controlled by the DOS-350 logic computer in
accordance with the mode-logic table of the integrator (AO5) AO5 is pro-
grammed to integrate for a fixed length of time T and then to hold its wvalue
at the end of time T. During this hold periogd, track/store amplifier AO6
tracks AO5 and stores its value. After AO6 has stored the value of AOS, AOS
is commanded to reset. Operation of the circuit in figure 9 is similar to
that in figure 8.

IOX|A {1

230,27

x,A(t) b@ '

P92 72
REAL A56
X
+Y -y TRUE TRACK/ 'A A07
\ - AVFRAGE STORE

M56G

IMAGINARV {A'IG —1 ‘

A28 —1 +X

szw
1 0ppwiw

REAL {A27 +X MBG

%o, {1 % =
aw ATS T,y il TH e[ Jn

K
X?Aw(') a, 12

G-

FROM MLG
LOGIC / { IMAGINARY (208 FROM MLG
P93 73 3 28 Tre 0SS x, 0 JF70 iy {
10x7, (0 DOS - 350
Figure 8.- Squaring and averaging system, Figure 9.- Squaring and averaging system,
x1(t) power spectrum channel. Q12(w) channel.

Output equations.- There are four outputs from the analyzer when two
channels of data are being analyzed: ®11(w), ®s2(w), Cis(w), and Qi1o(w).
After the signal 1s traced through the analog circuits and all gain factors
are accounted for, these four outputs become

011(0) = o(output 1) 1 Sa
H 7.20x10%2, K2, w S, (13)
o(output 2 1 Sa
doo(w) = (Output 2) A By (1)
7.29x10%K5, K 22
S
Craln) = ——2qutput 3) L A (15)
7.29%x107K11K21K12Ko2 2 o
o(output k) 1 SA
%az(w) 7.29x10%K; 1K1K 1Ko &9 So

where the gbove equations are in mean-square power, and
SA magnetic tape loop speed playback when analyzing data

So magnetic tape speed at which the data were recorded originally

11



The factor SA/So is necessary because the multipliers in the 231R-V are
accurate only to about 5 kHz. To analyze to 20 kHz, a speed reduction of L is
required. The normalization of the output equations by the bandwidth is wvalid
only for continuous spectra. (A continuous spectrum is one whose output is
directly proportional to the analyzer bandwidth.)

-

Automatic program control and analog data digitizing.- The complete
program for controlling the analog computer for automatic spectrum analysis
is provided by the DOS-350 logic computer. The D0S-350 also digitizes the
four outputs from the analyzer and punches these outputs on paper tape for
subsequent spectrum scaling and static skew-error compensation on the
IBM 7OMO/709h system. Specifically, the D0S-350 performs the following
functions during spectrum analysis:

1. ©Senses the control signal recorded on one channel of the tape loop
and starts the analysis for that frequency point as programmed on the fre-
quency synthesizer. The splice problem on the loop is eliminated by using a
step-type control signal on the tape loop.

2. Generates a second set of control signals for spectrum analysis at
higher frequencies if the data are stationary throughout the record.

3. Generates a control signal to advance the block paper-tape reader by
one block (one frequency point) at the end of the analysis time T.

L. Generates integrator and track/store amplifier control signals to
control the analog spectrum computation in a fully automatic mode.

5. Records the number of frequency points analyzed and shuts off the
program at the end of the analysis.

6. Punches the program on paper tape in the proper format consistent
with the IBM TOLO/7094 system.

Scaling and static skew-error compensation.- Scaling is defined here as
the conversion of the spectrum outputs to engineering units of the original
experiment. For example, if the spectrum outputs should be in psf/Hz (pounds
per square foot per hertz), then the original calibration of the transducer
must be used to multiply the spectrum outputs at each frequency point. This
type of scaling or multiplication is ideally suited to the digital computer.

There are two ways of compensating static skew error:

1. By an analog delay line at the output of the magnetic tape recorder,
and

2. By computing 6 *2xfrT at the digital computer after scaling, where
T 1is the time difference between recorder channels, and 6 is the arctangent
of Qio(w) over Cino(w) in radians. If x1(t) leads xo(t) by T, 6 - 2xfr
is used; otherwise, 0 + 2xfT 1is used.

12




Static skew-error compensation is mandatory at high frequencies for the
“cross-power spectrum since present recorders can have static skew errors as
large as 30 usec, which represents 216° at 20 kHz.

Dynamic Range, Resolution, Bandwidth, Averaging Time,
and Frequency Scan Rate

The dynamic range of the analyzer must be carefully considered before the
type of analog computer is selected for spectrum analysis. Dynamic range here
is defined as:

maximum spectrum output obtainable
minimum spectrum output observable

dynamic range =

For a high quality *100-V computer, the dynamic range is about 100 to

0.05 or 66 dB. To obtain the maximum 66-dB dynamic range at the outpul, two
gain controls are used in each channel of the analyzer. In the xl(t) channel,
K11 1is the prefilter gain and Ki» 1is the postfilter gain. Before each anal-
ysis, a search is required for the maximum spectrum output. After that partic-
ular frequency point is located, K;j; and Ki» are adjusted for a 100-V output.
In a good #100-V analog computer, the output is actually linear up to *120 V
or more.

Resolution and bandwidth are functions of the low-pass filter setting.
The bandwidth should be chosen in accordance with the type of data to be
analyzed. To simplify changes of bandwidth, standard low-pass filters are
used.

The problem of averaging time is solved by using true averaging. The
frequency scan rate has no meaning in this hybrid method of spectrum analysis,
since a sweep-type oscillator is not used. After completing a frequency-point
analysis, the next frequency point can be analyzed as soon as the system
transient decays to zero. i

Statistical Uncertainty

the random statistical variations of the sample record. Perhaps the most com-
plete discussion, but not necessarily the easiest to understand, on the sub-
ject of statistical error is given by Chang (ref. 8). Some error discussions
were also given by Bendat and Piersol (ref. 9). Confidence limits can be
defined as relative for statistical error comparison. In reference 8, the
confidence limits are defined as

|

|

|
The predominant source of error or uncertainty in an anaslyzed spectrum is

|

1 < Plw 1
1+a  ow) 1-a

(17)
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where

o(w) true spectrum
@(w)a analyzed spectrum
2
. el
1
c _—
NI
N number of sample records
kp a constant depending on the specified probability, tabulated as
follows:
P kp
0.5 0. 477
.8 .906
.9 1.163
.95 1.386
.99 1.82
-999 2.32

Example: The signal to be analyzed has the following analyzer parameters:
N=1, T = 10 sec , LN = 10 Hz
Now determine the 90-percent confidence limits.

Solution: The rms per unit errocr of each record is

€ = —j;—'= 0.1
AT
For P = 0.9 or 90 percent, ky = 1.163. Therefore,

a=1.163 x 0.1 xE: 0.165

1

- l —
-5 = 1.198 , = 0.858

1+ a

Thus, there is a 90-percent probability that the true spectrum lies between
0.858 and 1.198 times the measured spectrum.

1h
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Figure 10.- Analysis of a sine wave.
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Figure 11.- Analysis of white noise from
10 Hz to 20 kHz.
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Figure 12.- Analysis of a heartbeat pulse.

Typical Results

Figure 10 shows the analysis of a
single 0.707 Vrms sine wave at 1 kc as
an input to both the =x,(t) and xo(t)
channels. The result shown in fig-
ure 10 is correct since the analysis of
a single sine wave for a frequency band
across the analyzer bandwidth is the
amplitude response of the analyzer
band-pass filter.

The analysis of a band-limited
white noise from a General Radio
GR-1390B generator is shown in fig-
ure 11. The noige is first passed
through a low-pass filter with an
effective bandwidth of 20 kHz. The
amplitude of the noise is then adjusted
to read 0.45 Vrms at the output of the
filter (i.e., the input to the ana-
lyzer). This gives a power spectral
density of 107> VZ/Hz. The scatter of
the measured values about the actual
values is within *2 percent.

Figure 12 shows an analysis of one
heartbeat from medical research with a
0.2-Hz analyzer bandwidth from 0.5 to
125 Hz.

Figures 13 and 14 show the power
and the cross-power spectra of two
typical 20-kHz wind-tunnel data. These
data are from transducers 1 inch apart,
stations -18.19 and -17.19. These two
figures are plotted by the digital com-
puter side by side on a 31 X 31l-inch
sheet. The accuracy and confidence of
these figures are confirmed by three
CPRMS numbers. The CPRMS (wind tunnel)
is the RMS value of the data measured
at the wind tunnel during an experiment.
The CPRMS (loop output) is the RMS
value of the data after it 1s trans-
ferred onto an analog loop recorder for
spectrum analysis. The CPRMS (psd
area) is the RMS value of the data com-
puted in the digital computer by taking
the square root of the area underneath
the power spectrum curve. Under ideal

15



TEST NUMBER 153 IDENTIFICATION X Y FILE NUMBER 75
RUN NUMBER V37 TRACK_NUMBER 1] ) PHASE ANGLE
CONFIGURATION 27 PERIPHERAL LOCATION [*] L+ ARCTAN
MACH NUMBER 2 STATION LOCATION —18.19 =17.19 "
DYNAMIC_PRESSURE (Q) 760 pel | CPRMS (WIND TUNNELY | 0297 ] 6292 QUADSPECTRUM/ = QUADSPECTRUM
VELOCITY (V) 1745 fps | CPRMS (LOOP OUTPUT) | .02994 02914 COSPECTRUM ~
CRARACTERISTIC LENGTHILY \in. | CPRMS (PSD AREA .02942 | 03009 ° COSPECTRUM
- 107!
z = X TRACK 8
2 ° Y TRACK COMERENCE 4
072 :
e,
E 303 .eE
g 3 COSPECTRUM 4
aa AND o
« 10 LN QUADSPECTRUM,
% NORMALIZED ‘~4E
2 10-5 -8 T T A RV R I A T O A NIt
104 1073 02 107! 10 10°% 1073 102 10! 10
FREQUENCY, FL/V FREQUENCY (FL/V)
Figure 13.- Power spectral of two typical Figure 1lkh.- Cross-power spectrum of two
20 kHz wind-tunnel data. typical 20 kHz wind-tunnel data.

40
B 30t — ACTUAL
= sl O HYBRID METHOD (THIS REPORT)
> A BOMM — TUKEY METHOD
1oF ° o
0 o T 1 it 11211 =II it 11481l 1 1 1 20..
1ot
[ T T T T T T g o t + 1
201 . ° -0}
vV e m q "~ O HYBRID METHOD
g et = o) e s
& BOMM-FOURIER METHOD
o 60r g v 2155) -3+ O BOMM -~ TUKEY METHOD
s} . P s —a0t
Ioo i P Ut 1 L4411 I oLl 1 i -50 — b i J
A | t0 100 .0l K I 10
FREQUENCY, rad/sec FREQUENCY, rad/sec
Figure 15.- Analysis of the transfer function. Figure 16.- Analyzed transfer function of

a human pilot.

conditions when no error occurs, these three numbers should be equal. As
indicated in figure 13, the error is about 3.15 percent.

Figure 15 shows the analysis of a known transfer function, Y,. This
same transfer function was analyzed independently in the digital computer by
the BOMM-Tukey method (ref. 10). The results obtained are in close agreement
with the actual frequency and phase response. Figure 16 shows the analysis of
8 human pilot. Note the close agreement of the results obtained by the three
methods - the hybrid method, the BOMM-Fourier method, and the BOMM-Tukey
method.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 27, 1966
. l2k-11-04-06
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APPENDIX A

DERIVATION OF &;3(w) FOR RANDOM SIGNALS

FROM AUTOCORRECTION

The purpose of this appendix is to show that the power spectrum

[0 0] .
-JjwT
011(w) = \jf Ri1(r)e T ar (A1)
-00
can be estimated by
1 T
214 = 2
011(w) 2 1lim ST f xm(t)dt (A2)
Ly—>0 o
T

To proceed with the derivation, the inverse transform of equation (Al) is
taken.

o0} .
Ri1(T) = \jp o11(w)e?™T aw _ (A3)
=00
Since
R11(0) > |R11(7)]| (Ak)
the maximum psd 1is obtained for T = 0. That is,
[o 0}
R11(0) = @12 (w)dw (A5a)
-
1 T/2
= ln 3 x2(t)at (A5b)
T -T/2

In the derivation of a cross spectrum, T cannot equal zero because ng(O) is
not necessarily the maximum wvalue. PFor this reason, the cross spectrum is
generally complex. Equations (A5) should be clear intuitively since the total
power of x(t) is equal to the mean square value, and also to the total ares
underneath the power spectrum curve. Now, for small dw, dw approaches Aw.
In the limit, as dw approaches zero,



!

lim f 011(w)dw = lim 2 ®11,(w)dw (A6a)

dw—=0 VY- dw-o
n= -0a
[oe]
= lim 2 2 q)llAm (w)Am (A6b)
N0 n
n=o

The interpretation of equations (A6) is that integrating ®1:(w) is equivalent
to obtaining the area underneath the spectrum curve. This area can also be
obtained by dividing the area into n small areas with width Aw and summing
over n. In view of equations (A6), equation (A5a) becomes

o0
Ry1(0) = 1im 2 Z Q11 (w)ow (A7)
DA—>0 n
n=o0
or
Rllm(o) = lim 2<I>1lm(w)Aw (48)
AN inde]
from which
. 1l -
<D11Am(w) = lim 7~ Rllaw(o) (49)
JA N iade)
or, in general notation,
1 T o
011(w) = lim AT f xm(t)dt (A10)
VAN de] o)
T—0

where wa(t) is interpreted as x(t) passed through a band-pass filter with
bandwidth Aw. This completes the derivation.
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APPENDIX B

DERIVATION OF &35(w) FOR RANDOM SIGNALS

FROM CROSSCCORRELATTION

The purpose of this appendix is to show that the cross-power spectrum

\ 00 .
®12(w) = Rio(7)e 7T ar (B1)
=00
can be estimated by
d1o(w) 2 Cio(w) + jQ12(w) (B2)
where
1 T
Cio(w) = lim Y J[ Xlém(t)xzéw(t)dt (B3)
Nr>0 o
M=
1 T 0
Q1z2(w) = lim mf x1, (t)x2, (t)dt (BL)
NY—>O o
T~

and Xgéw(t) is X2Aw(t) delayed 90°. To proceed with the derivation, the

inverse transform of equation (B1) is taken. The varisble delay T cannot be
set equal to zero because Ris(0) is not equal to nor, in general, greater
than Ris(7). It is felt that the derivation that follows is heuristic,
rather than rigorous. Now,

Ris(T) = kjrw ¢12(w)eij dw (Bka)
- [T [C1o(w) + jara(w)1e?™T d (Blb)

-00

Since an arbitrary function can be decomposed into a sum of an even and an
odd function (e.g., ref. T), then,

Ri2(T) = Ria(1)e + Ria(r) (BS)
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where ng(T)e and Ris(T) are the even and odd parts of Rys(T), respec-
tively. Now, the result of equating equations (B5) and (BLb) is

o0

R12(T)e + ng(’r)o = f Clg(w)eij dw
+ (J)f Qua(w)ed®T (B6)

With some intuition, let us equate the even and odd parts of equation (B6).
That is,

Rlz(T)e = Clz(w)eij dw (BTa)
Riz(T), = (J)f Q1a(w)edT ay (B7D)

In a manner similar to the derivation of the power spectrum, the cospectrum
can bte derived as follows:

[e0]
R12(O)e = \jp Cro(w)dw
=00
(o]
= lim Z Ciz, (w)dw
dw—>o
Ne =00
(0]
= lim 2 Z Cio, (w)ow
Ny—>0 Awn
n=o
ngm(o)e=lim 2C1z, 0w
No—=>0
1
Ciz, = lim 57 Riz, (0O) (B3)
Mo T 2w Nt e

In general,
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1

‘ Cia,, = i‘in—io ERRM(O)
1 T
= lim —f x1, (t)xo, (t)dt (B9)
romo WT ) T A
T—>c0

This completes the derivation for

the cospectrum. Now, for the gquadspectrum,

[e0]
R12(0), = J f Qiz(w)dw
=00
%’ﬁ
“JR12(0)p = Lin ) Quap(w)dw
dw—>o
n= -
[o0]
= lim 2 Z Q1o (w)Aw
JA N do] Aoy
n=o
-JR12,,(0)g = lim  2Q12, (w)lw
Moo
1
R I 1
QlZm Z:lgi-)rio 2NY ( J)Rlzﬁb)(o)o (B O)
In general,
. 1 .
QlZm = lim oMY (-J)R:LZ&(O)
Ny =0
T
. 1 .
= lim m(-J)f x1,, (t)xz, (t)at
No =0 ¢}
T->00
. 1 T 2\ 0 +3
= lin o= le(b;XZM(U/dt (B11)
My—>0 o]
T-o

This completes

the derivation for the quadspectrum.
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APPENDIX C

DERIVATION OF OUTPUT EQUATICONS FOR ANALOG METHOD

OF POWER AND CROSS-POWER SPECTRUM ANALYSIS

The schematic diagram for this method is shown in figure 3. Let the
inputs be

x1(t) = A5 sin(wit + 65) (c1)
xs(t) = }: C, sin(wit + @i) (c2)

=)
\l
[

B sin w.t for O° phase
= ]
05C '{—B cos wet for -90° phase (c3)
where 64, in general, does not equal ¢.. The values 63 and ¢; indicate

that the Inputs, in general, are random phase with respect to the oscillator.
With the summation understood, the filtered outputs are

xlAw(t) = g'Ai cos B (Cha)

xlﬁw(t) > Ai sin o1
B

X%&n(t) 5 Ci cos B (c5a)
B .

X%Am(t) = 5 Ci sin ®p (csb)

where
d1 = (wit - wot + 64)

82 = (wit - wyt + ®;)

The power spectrums of x1(t) and Xz(t) in terms of mean square power are
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o1 [°
o11(w) = =7 f [xim(t +xlm(t} dt
)
2 2(Output 1)
=5 (K12 +K22 + . . . +Kn2>= o (068.)
T
2 1
doo(w) = o T J[ [Xgéw(t + Xzﬁw(t)}
o
2 2(Output 2)
= o (12% + 1% + m®) = s (céb)
where
A:B CsB
i i
Kj_='?) Zj_:‘_g—; i=1,2 3,
\wi + wo| 2 Wa wi - wo\ < Wa

Equations (C6) have no ambiguity and are correct forms for random signals as
well as for complex or periodic signals. The division by 2w 1in equa-

tions (C6) is for bandwidth normalization, and should be used for continuous
spectra only. The cospectrum and quadspectrum in terms of mean squared power
are

T
Cl2(w) = &% f [le(t)XEAD(t) + X?ﬁw(t)Xgm(t)} dt
o
= é%-Output 3 (073)
T
Gx@) = - B [ [ran (98,0 - om0 | as
o
= - ii—Output b (7o)

This completes the derivation for the output equations. To show that the
quadspectrum has no ambiguity in sign as a function of frequency,

1 T g2
Qutput 4 = - T J[ T }z (Ai cos 93105 sin dp
o ,
i=1

- A; sin 8;C4 cos dp)dt (c8)
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To simplify equation (C8), let

Xl(t) = Al sin wit
x2(t) = Ay sin(uit - 62) (c9)
05 = a variable, from 0° to 360°
Then
8y = (w1 - wo)t
(c10)
82 = (w1t - wyt - 62)
and
2ne
Output 4 = - ALZE_ % L/\T [cos(wy - wg)t sin(wit - wot - 62)
0
- sin(wy - wy)t cos(wit - wyt - 2)ldt (c11)

Case 1. w1 > wy by Mg wi = wy + Ay
A2B2 1 [T
Output b = - - & k/\ [cos(aw )t sin(aw,t - 62)
O

- sin(Awo)t cos(Mw t - 62)]dt

_om L [t 2 . - .
= -7 [(-cos® Aw,t sin 8z) - (sin® Aw t sin 62)]dt
o
22
= Alﬁg— sin 6o (c12)
Case 2. w1 = wg
2p2 T
Output 4 = - élz—— % k/\ (-sin 62)dt
o
2n2
= 85 sin 0, (c13)

2L




, Case 3. w; < Wos W1 = w, = Lwg

o

A% 1 [T
Output 4 = - _Lr z f [ -cos(w, )t sin(Ath + 05)
)
|
|
+ sin(Awo)t cos(Ath + 02)lat
A2B2 1 [T 2 . . o i
= - —lzf— T [(-cos Mgt sin 62) + (-sin® Aw t sin 62)]at
o
2n2
= élﬂg— sin 6o ' (c1y)

Thus, for all three cases, output 4 (a quadspectrum output) is always a plus
sine function, and there is no ambiguity.
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